Use of Reasonable Assurance Plans as Alternatives to TMDLs

Florida Stormwater Association Winter 2017 Meeting 6 December 2017

Presentations by:

Tony Janicki

Julie Espy

Janicki Environmental, Inc.

Tiffany Busby

Judy Grim

ILDWOOD

Brett Cunningham

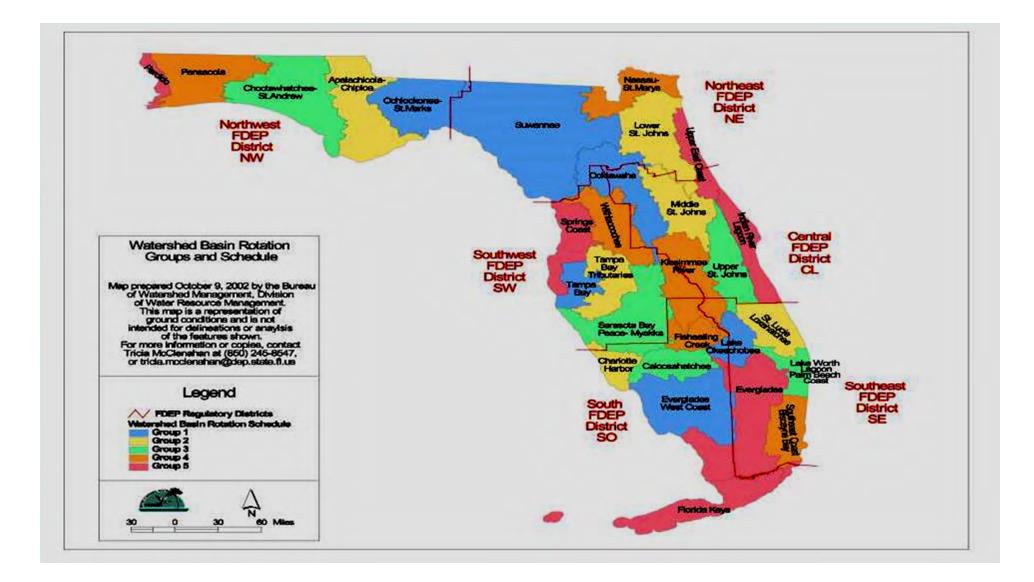
Florida Reasonable Assurance Plans

Julie Espy Florida Department of Environmental Protection

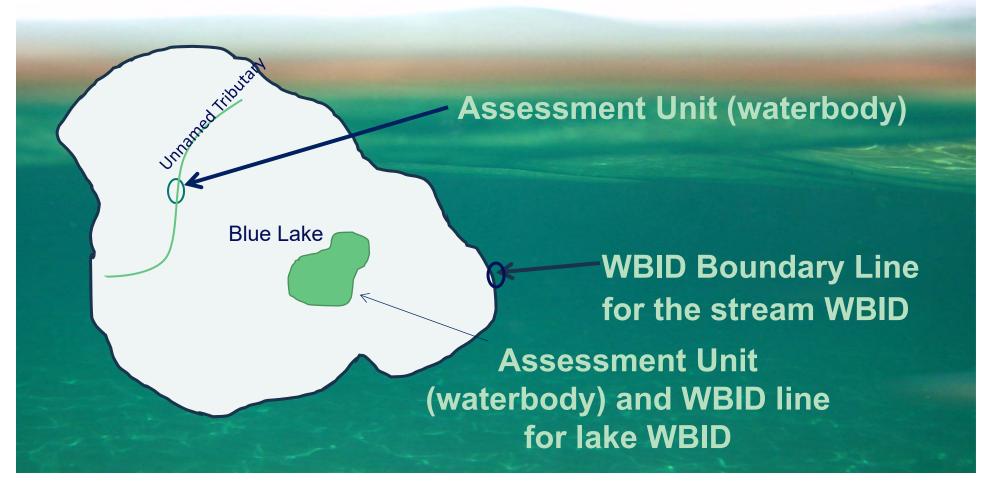
Florida Stormwater Association

Winter 2017 Meeting

6 December 2017



Florida's Requirements


- Section 303(d) of the Federal CWA
- Florida statute 403.067 established the Florida Watershed Restoration Act in 1999
- Surface Water Quality Standards Rule 62-302, F A.C.
- Impaired Waters Rule (IWR) 62-303, F.A.C.

Waterbody Identification Number - WBID

Assessment Category Descriptions

Category 1 - Attaining all designated uses Category 2 - Not impaired and no TMDL is needed Category 3 - Insufficient data to verify impairment (3a, 3b, 3c) Category 4 - Sufficient data to verify impairment, no TMDL is needed because:

4a – A TMDL has already been done

4b – Existing or proposed measures will attain water quality standards; Reasonable Assurance

4c – Impairment is not caused by a pollutant, natural conditions

4d – No causative pollutant has been identified for DO or Biology

4e – On-going restoration activities are underway to improve/restore the waterbody

Category 5 - Verified impaired and a TMDL is required

Descriptions of the Lists

- Planning list used to plan for monitoring
- Study List need additional study or information
- Master list includes ALL assessments for every waterbody
- Verified list impaired waterbodies, need a TMDL
- Delist list waterbodies that do NOT need a TMDL
- 303(d) list kept by EPA as the sum total of all waterbodies that do not meet surface water quality standards and/or designated uses

DEP Watershed Restoration Process

- Assessment of Waters
- TMDL Development for Waters Verified as Impaired
 - 1 year + for priority waters
 - 5-10 years for others
- Development of Basin Management Action Plan (BMAP)
 - 1-3 years
- Implementation of TMDL through BMAP
 - 1-10 years +

Restoration Alternatives

Two types of Restoration Alternative Plans

1) Reasonable Assurance Plan

- Assessment category 4b
- Not placed on the 303(d) list
- 2) Pollutant Reduction Plans
 - Assessment category 4e
 - Included on 303(d) list

These plans are addressed in the Impaired Waters Rule in section 62-303.600, F.A.C.

Benefits of an Alternative Restoration Plan

- Provides a faster path to restoration
- Allows stakeholders to control their destiny
 - Developing a plan prior to state or federal action provides the be way for stakeholders to plan for efficient and effective management
 - Avoid TMDL-related regulatory requirements
- Acknowledges proactive efforts
 - Stakeholders receive credit for pollutant reductions
 - Benefits to downstream impaired waters
- Provides time for good targets to be developed
- Enhances public relations

Reasonable Assurance Plans

Basic Requirements:

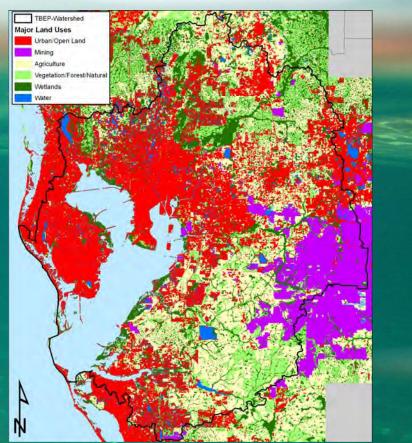
- Description of Impaired Waterbody
- Description of Water Quality or Aquatic Ecological Goals
 - The water quality-based targets or aquatic ecological goals (both interim and final) that have been established for the pollutant(s) of concern.
- Description of Proposed Management Actions To Be Undertaken
 - Schedule for restoration projects, including funding sources
- Description of Procedures for Monitoring and Reporting Results
- Description of and Commitment to Proposed Corrective Actions

Reasonable Assurance Plans

Reasonable Assurance plans (4b) provide an implementation schedule and resource commitments that there are, or will be, pollutant loading reductions that will result in the waterbody achieving water quality targets to attain and maintain the designated use.

Main inclusions in a Reasonable Assurance Plan:

- a restoration target (e.g. water quality, pollutant load)
- a list of projects and/or activities that will achieve the restoration target
- an implementation schedule that can span multiple years
- funding commitments
- requires EPA approval


Tampa Bay RAP

Tony Janicki Janicki Environmental Florida Stormwater Association Winter 2017 Meeting 6 December 2017

Janicki Environmental, Inc.

Tampa Bay - Fast Facts

- Florida's largest openwater estuary
- Open water: 400 sq miles
- Watershed: 2,600 sq miles
- Average water depth: 12 feet
- Population: > 3 million

Troubled Waters

- Half of Tampa Bay seagrasses lost by 1982
- Half of Tampa Bay's natural shoreline altered
- 40% of tidal marshes destroyed
- White ibis populations plummeted by 70%
- Visibility reduced to 2 feet
- Fish kills common

A "poster child" for polluted waters

- "60 Minutes" segment brought national attention
 - Poorly treated sewage
 - Unrestricted dredging and filling
 - Untreated stormwater runoff and industrial discharges

Citizens demanded action

- In 1978, State legislation required upgrades to all wastewater treatment plants
- By 1981, 90% reduction in nitrogen loading from treatment plants discharging to bay

The beginning of Tampa Bay's Collaborative Approach

- Public sector realized that nitrogen management goals were unattainable without private sector help.
- Private sector invited to participate with the public sector in the voluntary Nitrogen Management Consortium.
- Each partner contributed to nitrogen management goal as they were able - no requirements or allocations

The beginning of Tampa Bay's Collaborative Approach

Key Decision: Collaborative Management Strategy

- Consortium participants willing to work together to develop voluntary allocations (caps) for nitrogen loads, for agencies' consideration.
- Decided they wanted to 'drive the bus'

What's this about a TMDL

- DEP proposed a TMDL for Tampa Bay that was eventually adopted by EPA
- The voluntary TN load reductions morphed into this TMDL.
- DEP recognized the work of the TBNMC and together created a mechanism that built on voluntary efforts
- DEP required TBNMC to provide "reasonable assurance" that the load reductions and water quality targets would be met
- That mechanism lead to the first Reasonable Assurance Plan

Tampa Bay RAP

This RAP was developed by the Tampa Bay Estuary Program and members of the Tampa Bay Nitrogen Management Consortium in cooperation with EPA, DEP - accepted in 2002

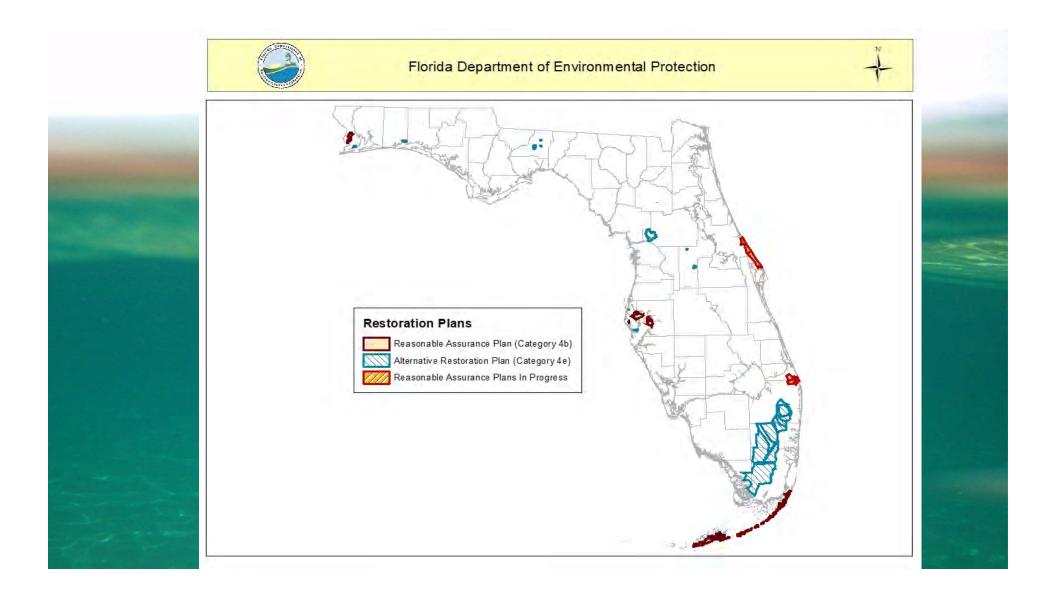
The plan provided supporting documentation for site-specific alternative chlorophyll-a thresholds

Since 2010, updates submitted to the Department that demonstrated that there has been reasonable progress towards attaining the designated uses of waterbody segments within the Tampa Bay

Adopted RAPs & DEP Support for New RAPs

Tiffany Busby Wildwood Consulting Florida Stormwater Association Winter 2017 Meeting 6 December 2017

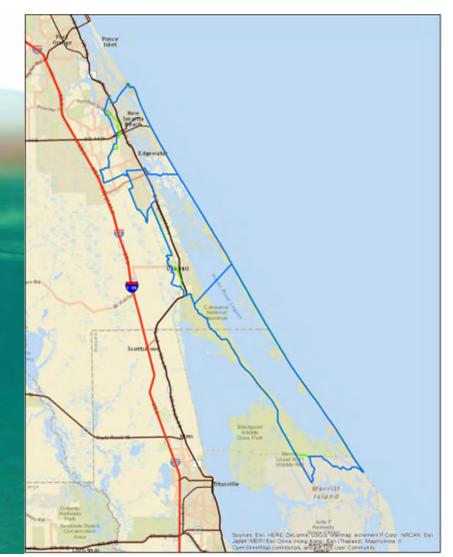
Examples of Completed RAPs


- Tampa Bay
- Shell, Prairie, and Joshua Creeks
- Lake Seminole
- Florida Keys

https://floridadep.gov/dear/watershed-assessmentsection/content/4b-assessments-raps

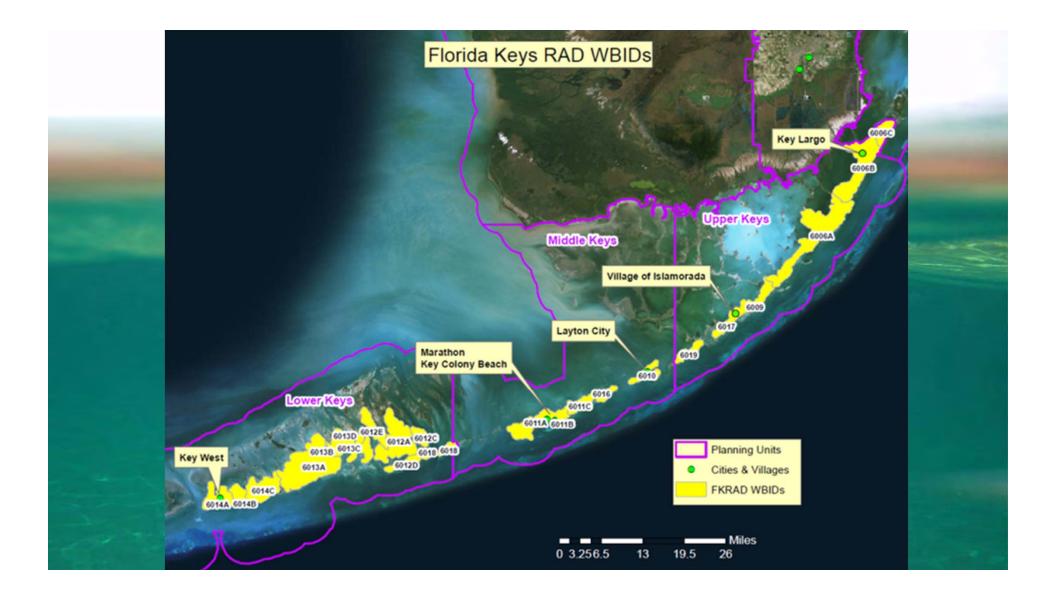
RAPs in Development

- Mosquito Lagoon
- Loxahatchee River
- Also, Florida Keys Reasonable Assurance Document (RAD)
 Update



Mosquito Lagoon

RAP Sponsors:


- Edgewater
- Florida Department of Transportation (FDOT)
- New Smyrna Beach
- Oak Hill
- Volusia County

Loxahatchee River

RAP Sponsor: Loxahatchee River Coordinating Council

DEP Role in RAPs

- Guidance
- Feedback
- Adoption
- Transmit plan
- Support EPA approval
- Facilitation support

Role of Facilitation

- Neutral party
- Action items
- Meetings
- Plan document
- Feedback

Some Lessons Learned

- Time and project commitments are necessary
- Technical support is beneficial
- Data limitations often affect management decisions
- Valuable to have local control of the process

Mosquito Lagoon RAP A Stakeholder's Perspective

Judy Grim, Director Volusia County Road and Bridge Florida Stormwater Association Winter 2017 Meeting 6 December 2017

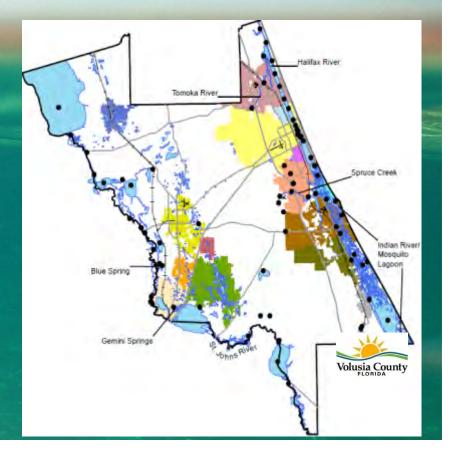
Water Quality Workshop

June 26, 2014 - County Council hosts a water quality workshop

Agenda:

- Priority Surface Waters
- Water Quality Overview
 - Surface Water Quality Monitoring
 - Common Pollutants and Sources
- Regulatory Protections of Water Bodies
- Volusia County Stormwater Management
- Wastewater/Septic Infrastructure
- City Presentations:

Daytona Beach, Daytona Beach Shores, Deland, Deltona, Edgewater, Lake Helen, New Smyrna Beach, Orange City, Ormond Beach, Ponce Inlet, Port Orange, South Daytona


Priority Surface Waters

- Indian River/ Mosquito Lagoons
- Halifax River
- Tomoka River
- Spruce Creek
- St. Johns River
 - Blue Springs
 - Gemini Springs

Water Quality Monitoring

- Indian River/Mosquito Lagoons
- Tomoka River
- Halifax River
- Spruce Creek
- St. Johns River
 - Blue Spring
 - Gemini Springs

Water Quality Monitoring

- Collecting since 1988
- 90 Locations, quarterly or monthly
- Data is shared through the state and national database

Indian River Lagoon

 156 miles long, 6 counties, 2 water management districts

• Algae blooms in 2011, 2012, 2013

3 distinct sections
Mosquito Lagoon

- Banana River
- Indian River

Mosquito Lagoon

60 square mile sub-basin

- Includes the 4,740 acre Mosquito Lagoon Aquatic Preserve
- Class II shellfish harvesting waters
- Very shallow, extreme salinities, long retention time

Water Quality

- Meets current criteria for chlorophyll, N and P
- May exceed proposed DEP criteria for chlorophyll, N and P

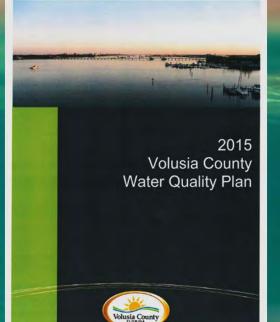
Volusia County Water Plan

Identifies four primary ways to improve water quality:

- Eliminating septic tanks in watersheds/spring sheds of priority water bodies;
- Improving stormwater conveyance and treatment systems to reduce nutrient pollution;
- Developing meaningful education and outreach programs to inform citizens about water quality;
- Reducing nutrients from wastewater plant discharges to surface or ground water.

Stormwater Management

Volusia County Stormwater Management Program:


- Drainage basin studies
- Stormwater Capital Improvements Program
- Improving stormwater conveyance and treatment systems to reduce nutrient pollution
- Grant procurement
- Staff training and education

Regulatory Protections

- Water Quality appears to be declining
 - Pollutant sources: stormwater runoff; fertilizer; septic tanks; wastewater discharge
- Not considered impaired through the Total Maximum Daily Load (TMDL) regulatory process
- Implement proactive process to stop the decline and improve water quality

Water Quality Plan Updates

- September 18, 2014 County Council adopts Resolution 2014-132 setting forth goals to improve water quality
- February 5, 2015 County Council adopts a Water Quality Plan with specific goals and actions to implement water quality improvements
- September 18, 2015 Funding for development of the Mosquito Lagoon Reasonable Assurance Plan (RAP) was approved.

Mosquito Lagoon RAP

2015 Water Quality Plan Goal 2: Develop a Reasonable Assurance Plan (RAP) for Mosquito Lagoon

- Process to improve a water body where a TMDL has not been established
- Local control over development and implementation of prevention and restoration activities
- Makes grant funding more accessible

Stakeholders

Stakeholders within the Mosquito Lagoon Watershed:

- Volusia County
- City of Oak Hill
- City of Edgewater
- City of New Smyrna Beach
- Florida Department of Transportation

And collaboration with:

- Florida Department of Environmental Protection
- Indian River Lagoon Council
- St. Johns River Water Management District and others

Mosquito Lagoon Area

Land Area in Acres: County 10,022 (includes ROW in Cities) New Smyrna Beach 4,485 Edgewater 6,467 Oak Hill 2,608 FDOT Roads (approximately 492) in County 121 in NSB 125 in EW 168 in OH

Joint Project Agreement

- Requires participation and funding from all stakeholders within the Mosquito Lagoon Watershed
- Between Volusia County and the cities of Edgewater, New Smyrna Beach and Oak Hill
- Separate funding agreement between FDOT and County

JPA Elements

- Scope of work for consultant contract
- Governance and management
 - Designate project administrator and alternate for each party
 - Each party has one vote plus FDOT a vote
 - Simple majority rules
- Funding
 - Cost allocation for project
 - Provisions for funding additional work
- Responsibility of parties
- Terms, amendments and termination

RAP Budget

Stakeholders agreed to cost share allocation

Volusia County	\$190,000
 City of Edgewater 	\$93,000
City of New Smyrna Beach	\$63,000
City of Oak Hill	\$25,000
• FDOT	\$7,000
Total funding	\$378,000

Cost share allocation based on percentage of land in watershed basin.

RAP Progress

- Joint Participation Agreement (JPA)
 - Agreements between the Cities and Volusia County is Complete
 - Volusia County and FDOT have a separate agreement
- Consultant selection through CCNA
 Contract with Jones Edmonds
- Project began March 2016
- Project scheduled to be completed by March 2018

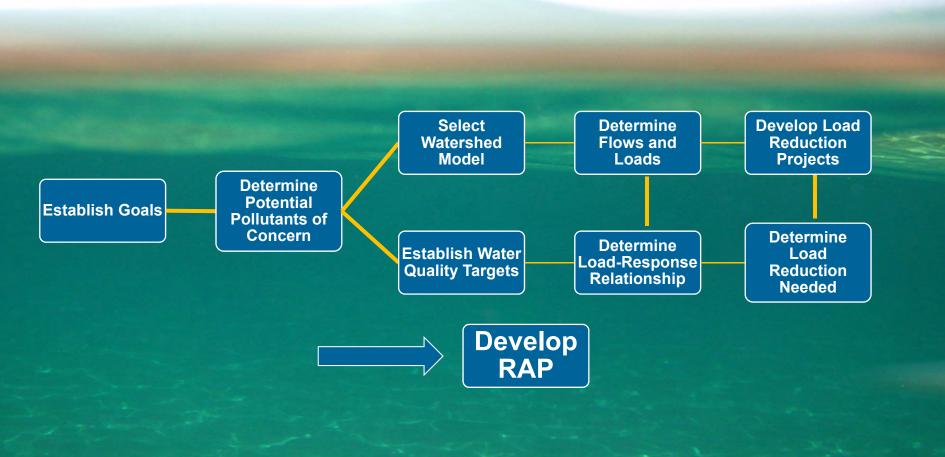
Challenges

- Requires multiple sanctioning bodies to approve JAP and allocate funding
- RAP is very technical process and has a long duration
- Keeping parties on track
- Special interest groups

Results

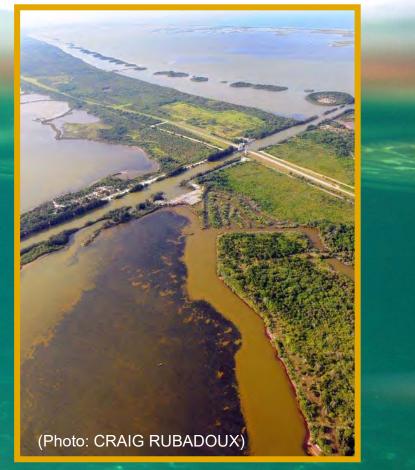
 Successfully assessed and documented current water quality and biological conditions

 Established appropriate and measurable indicators, endpoints, goals, and targets

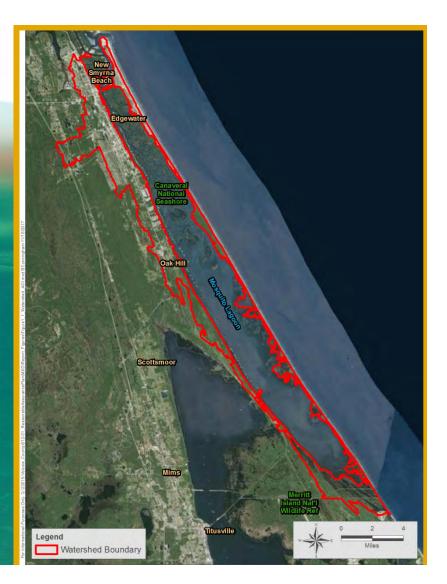

 Identified and prioritized appropriate prevention or restoration projects

Mosquito Lagoon Reasonable Assurance Plan Technical Approach

Brett Cunningham Jones Edmunds & Associates Florida Stormwater Association Winter 2017 Meeting 6 December 2017


> JONES EDMUNDS

Technical Framework


Potential Pollutants of Concern

- Total Nitrogen (TN)
- Total Phosphorus (TP)
- Possibly Biochemical Oxygen Demand (BOD)

Watershed Characteristics

- 36 Miles Long, 117 Square Miles
- Connected to Ponce Inlet
 and North IRL
- Watershed: Waterbody
- Small Subwatersheds
- Seasonal High Water Tables
- Mostly Sandy Soils

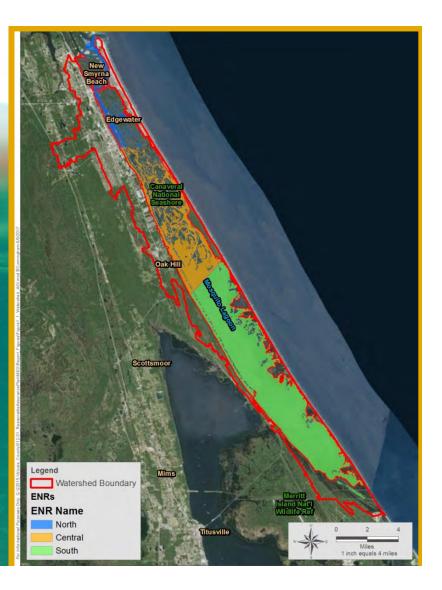
Importance of Transparency and Documentation

Pollutant Loading Model Selection

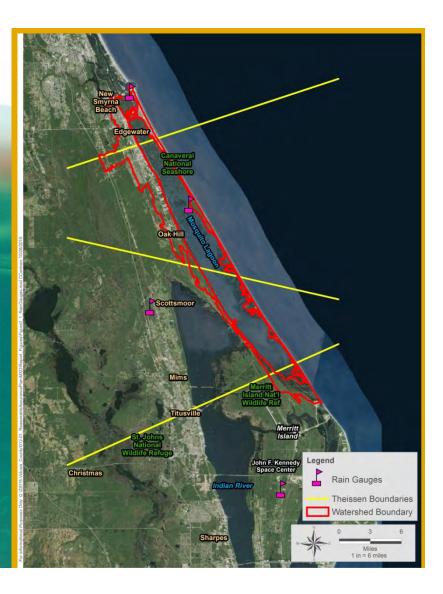
Key Watershed Characteristics and Simulation Capabilities

- Surface Water/Groundwater Interactions
- Flows and Loads from Direct Runoff and Base Flow
- Flows and Loads from WWTPs, Septic Tanks, and Atmospheric Deposition
- Account for Stormwater Best Management Practices
- Continuous Simulation
- Spatially enabled

Watershed Model: SIMPLE

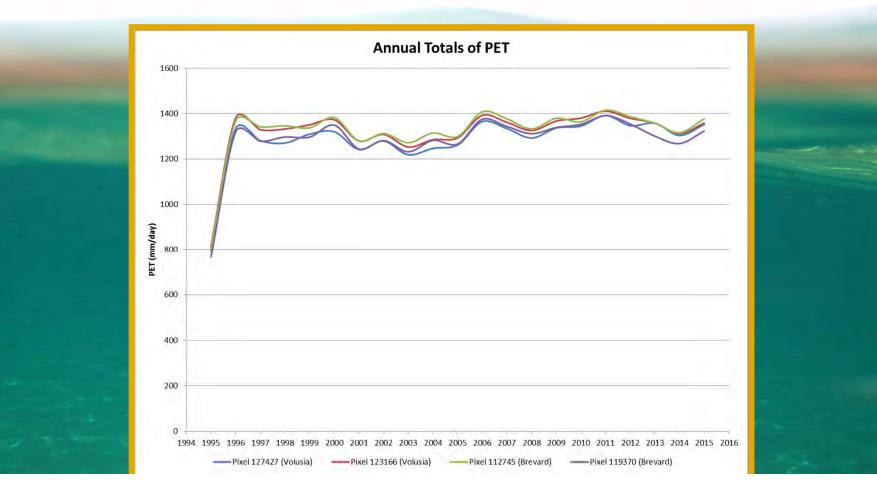

- Met criteria
- Transparency with Stakeholders
- Time-Enabled Data
- Flexible for Analyses of Options

Watershed Boundary


• LIDAR

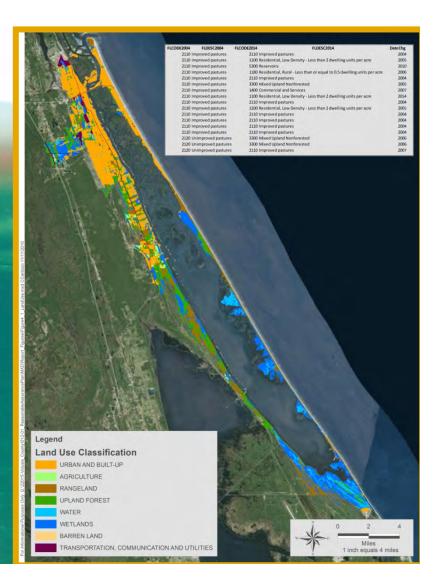
- Stormwater Infrastructure
- Considered Closed Basins

Spatial Distribution


Variability Across the Watershed

Spatial Distribution

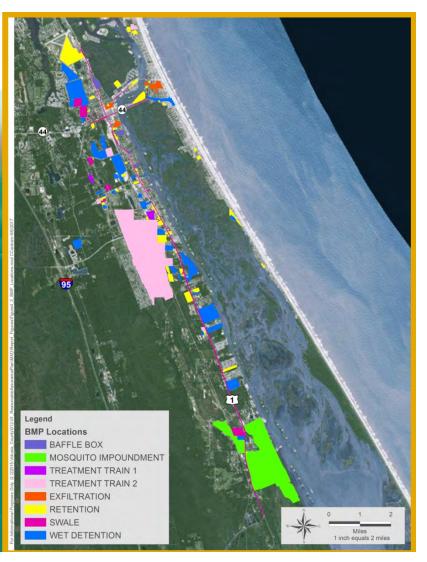
Station Name	Ransom Road at NASA	Ponce Inlet Weather Site at USCG Station	Playalinda at Turtle Mound	Parrish Park at Scottsmore
Station Number	15112758	18073682	1490678	1480674
Year		Annual Rainfall To	otal (Inches)	
2004	59.39	49.55	44.93	51.98
2005	62.60	49.23	45.33	49.37
2006	35.97	27.19	29.56	36.96
2007	50.86	35.55	42.17	50.15
2008	64.11	35.05	45.81	51.14
2009	39.84	54.38	46.75	42.02
2010	43.62	27.47	33.36	39.38
2011	45.98	35.36	40.82	50.22
2012	44.65	36.76	35.25	48.80
2013	42.36	40.23	39.32	42.01
2014	55.89	61.36	59.54	65.76
2015	42.42	33.20	33.67	42.30
Average (Inches)	48.97	40.44	41.38	47.51
Std Dev (Inches)	9.39	10.79	8.05	7.69


Spatial Distribution

Time-Aware Land Use

Increases Credibility

Removes Bias



Concentrations

Land Use #	De	scription		a superior	BOD	TN	TP
1	Ор	Open			1.4	1.15	0.055
2	Foi	rest			1.4	1.15	0.055
3	Pa	sture			5.1	3.47	0.62
4	Ag	riculture			3.8	2.61	0.49
5	Go	If Courses			3.8	1.87	0.3
6	L٥	Low-Density Residential 4.7				1.51	0.18
7	Me	Medium-Density Residential 7.9			7.9	1.87	0.3
8	Hig	High-Density Residential 11.3			11.3	2.4	0.50
9	Lo	Low-Intensity Commercial			7.7	1.18	0.18
10	Hig	h-Intensity Commercial			11.3	2.4	0.35
11	Lig	ht Industrial			7.6	1.2	0.26
12	He	avy Industrial			7.6	1.2	0.26
13	We	etlands			2.63	1.5	0.1
14	Wa	iter			1.6	0	0
15	Tra	insportation			5.2	1.37	0.17
Sector Carto		Constituent	TN	TP	BOD		
	4	Concentration (mg/L)	0.89	0.12	2.0		
	-						

Best Management Practices

- Spatial Coverage
- Type
- Year Built

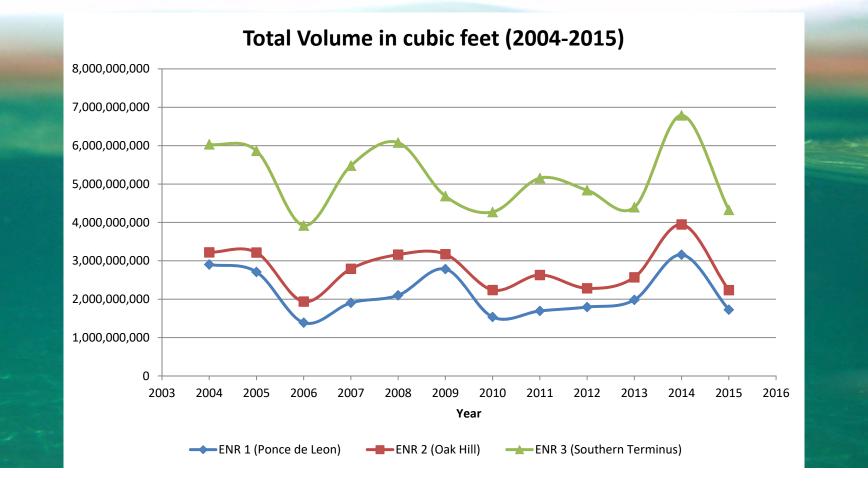
BMP Removal Efficiencies

	Constituent Removal Efficiency			
ВМР Туре	Volume	TN	TP	BOD
Baffle Box (Generation 1)	0	.5	2.3	20
Baffle Box (Generation 2)	0	19	15.5	30
Exfiltration ^{1,2}	75	75	75	75
Mosquito Impoundment ³	0	25	50	55
Retention ^{1,2}	75	75	75	75
Swale ^{1,2}	25	25	25	25
Treatment Train 1 (swale, wet detention, and possibly baffle box)	25	50	70	75
Treatment Train 2 (swale/retention and wet detention)	75	80	85	90
Wet Detention	20	36	62	70

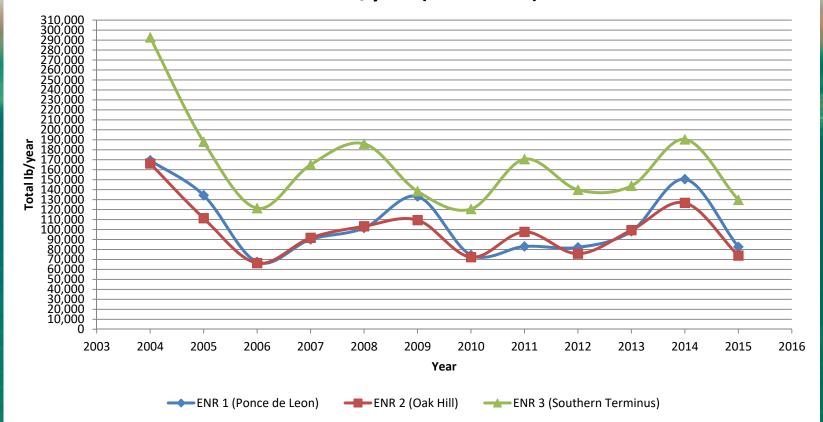
Point Sources

	Annual Discharge Rate (MGD)						
Year	Edgewater Surface	Edgewater Reuse	New Smyrna Beach Surface	New Smyrna Beach Reuse	Volusia Southeast Reuse		
2004	0.61	0.05	1.16	0.25	0.002		
2005	0.99	0.03	1.39	0.22	0.002		
2006	0.58	0.05	0.27	0.28	0.001		
2007	0.62	0.06	0.32	0.29	0.001		
2008	0.76	0.04	0.60	0.26	0.002		
2009	0.81	0.05	0.13	0.23	0.002		
2010	0.58	0.06	0.00	0.35	0.002		
2011	0.42	0.08	0.00	0.31	0.002		
2012	0.57	0.07	0.00	0.35	0.002		
2013	0.49	0.08	0.00	0.24	0.001		
2014	0.70	0.09	0.00	0.22	0.002		
2015	0.67	0.08	0.00	0.34	0.002		

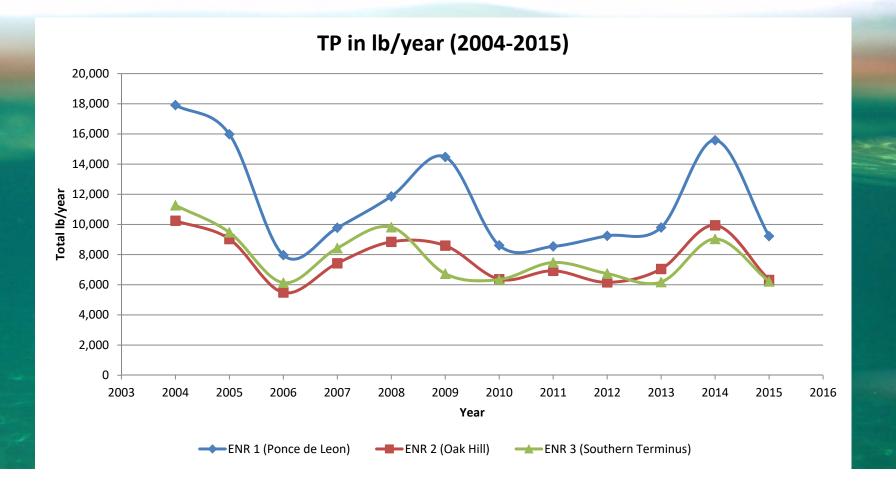
Septic Systems


- ~2,800 Septic Systems
- Failure Rate
- Proximity to Waterbody
- Return Fraction

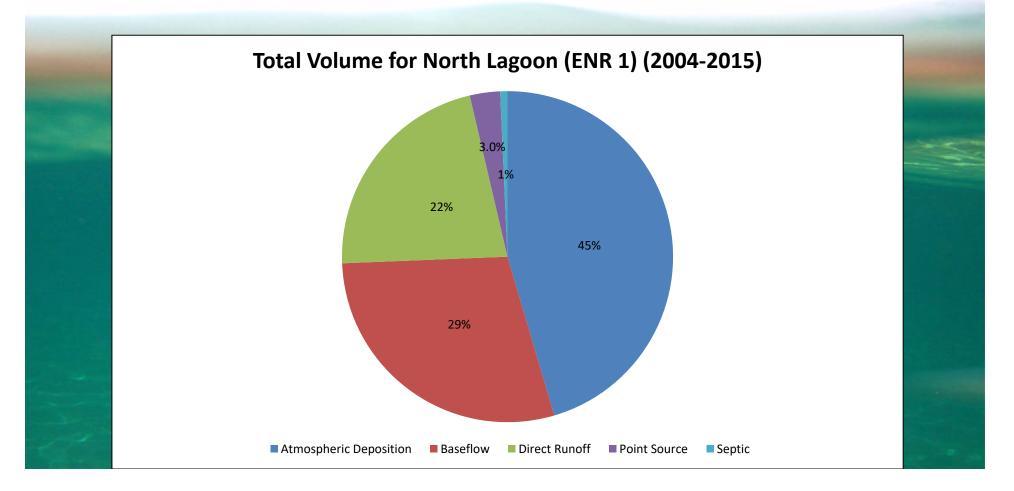
Atmospheric Deposition

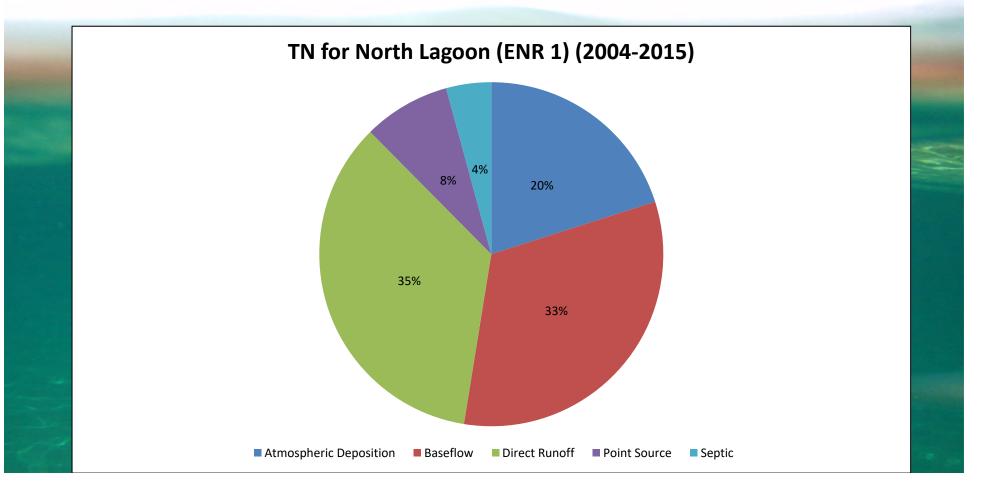

- Four Rain Gages
- National Atmospheric Deposition Program Site FL99 at the Kennedy Space Center
- SJRWMD Site IRL141 (wet deposition) at Coconut Point in Sebastian Inlet
- Clean Air Status and Trends Network (CASTNET) (dry deposition) at the same location

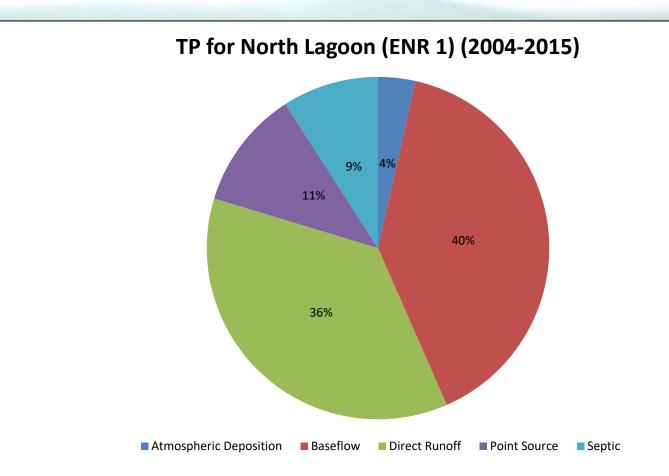
Total Volume Results

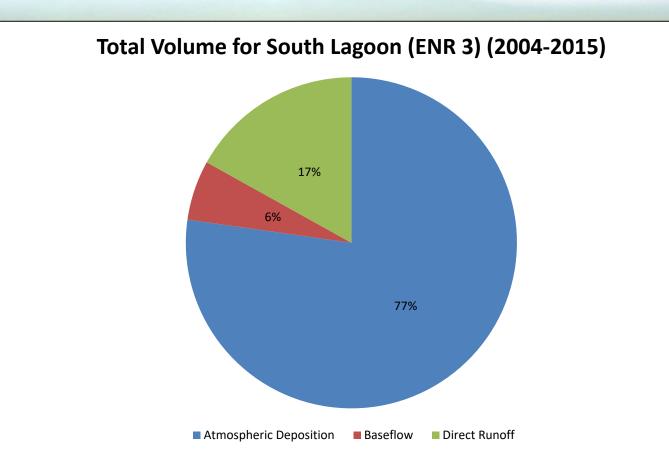


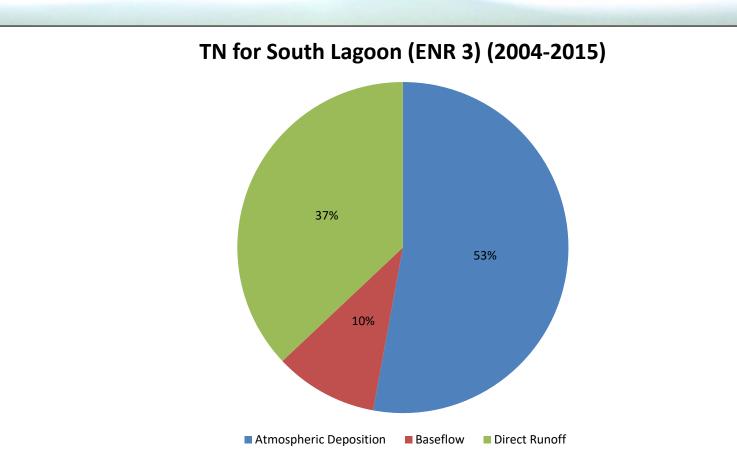
Total Nitrogen Results

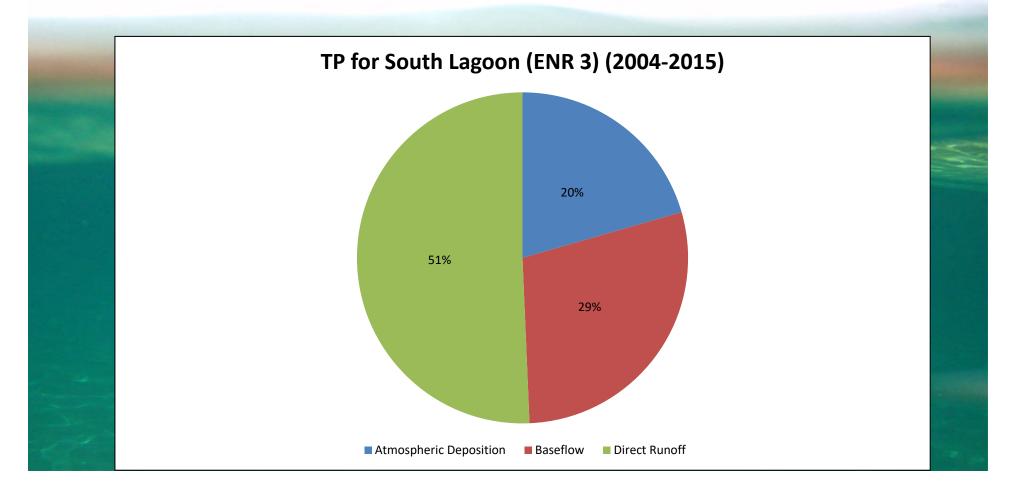

TN in lb/year (2004-2015)


Total Phosphorus Results

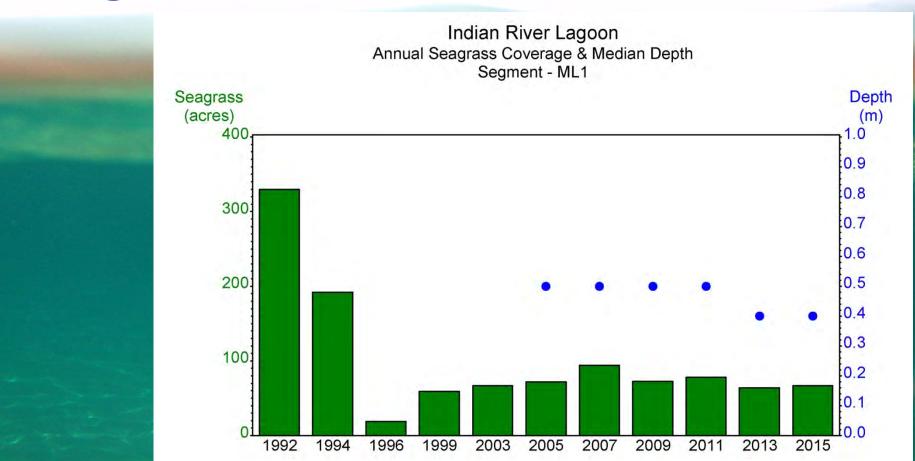

North ENR Total Volume Results

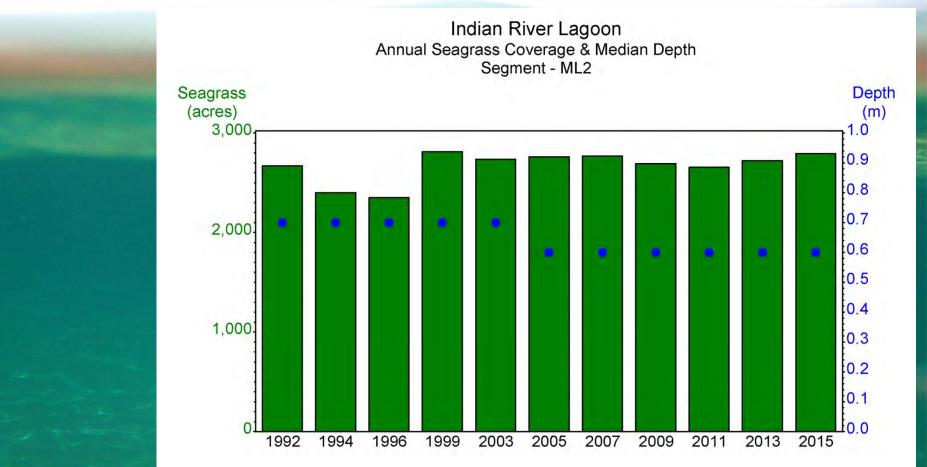

North ENR Total Nitrogen Results


North ENR Total Phosphorus Results

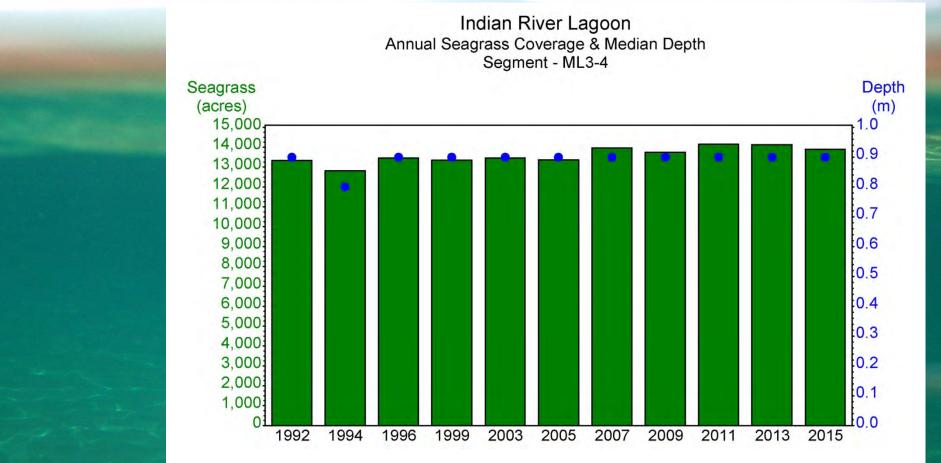

South ENR Total Volume Results

South ENR Total Nitrogen Results


South ENR Total Phosphorus Results


Mosquito Lagoon RAP

- Seagrasses
- NNC water quality targets
- Stressor-response relationships
- Loading targets


Seagrass

Seagrass

 Establishment of water quality criteria that protect critical aquatic resources is a necessary element of the Reasonable Assurance Plan

- Reasonable Assurance Plan provides focus for the management actions to restore and protect Mosquito Lagoon
- Important to neither fall short of the actions necessary to protect the Lagoon nor to exceed those actions adequate to protect the Lagoon

Best science

- In 2014, FDEP set criteria built on preliminary data analysis by the St. Johns River Water Management District (2010)
- Used a reference period of 2004-2008
- Did not include any data beyond 2008

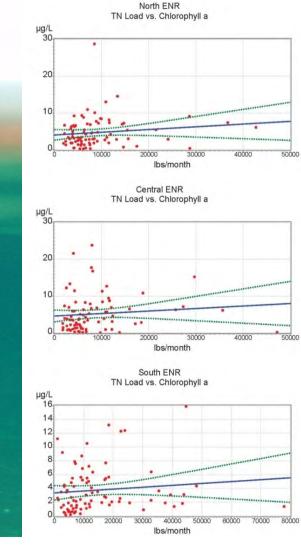
- Water quality targets in estuaries typically based on the protection of seagrasses and other aquatic life
- Seagrass health depends upon adequate light
- Water clarity driven by ambient water quality conditions including chlorophyll and nutrient concentrations

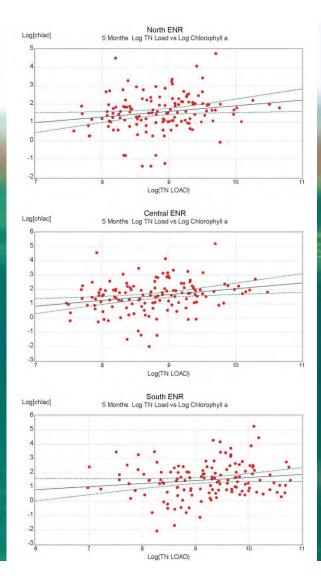
- District seagrass show seagrasses were similar throughout the period 1992-2015 and were not exceptionally greater during the 2004-2008
- Based on the seagrass data a reference period of 1992-2010, which is more representative of long-term meteorological conditions, has been proposed.

 Using the methodology used by FDEP in 2014, revised criteria have been proposed for TN, TP and chlorophyll

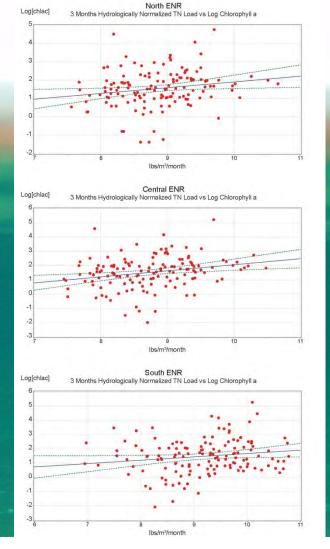
 The proposed targets have been reviewed by FDEP and will require acceptance by both FDEP and EPA.

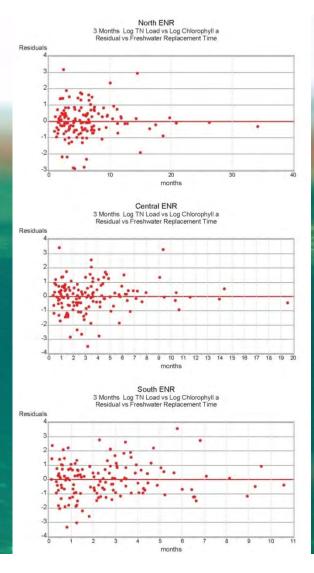
<text></text>	Estuarine Nutrient Region	Parameter	FDEP (2014)	Proposed
	North	TN (mg/L)	0.51	0.65
		TP (mg/L)	0.05	0.06
		Chlorophyll a (µg/L)	4.0	4.9
	Central	TN (mg/L)	0.65	0.85
		TP (mg/L)	0.05	0.06
		Chlorophyll a (µg/L)	3.4	5.0
	South	TN (mg/L)	1.14	1.31
		TP (mg/L)	0.03	0.05
		Chlorophyll a (µg/L)	2.5	5.2

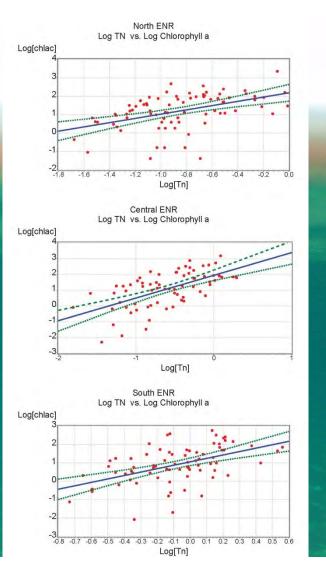

 A primary objective in establishing a Reasonable Assurance Plan is to define the nutrient loading targets that are needed to restore and protect estuarine health

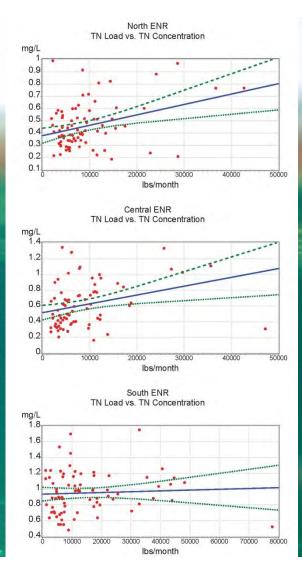

- Definition of nutrient loading targets generally follows one of three alternative approaches
 - Empirical Modeling
 - Mechanistic Modeling
 - Reference Period

- Series of empirical relationships were examined using the available ambient water quality data and nutrient loading estimates
- Applied statistical techniques to define the relationships quantitatively for multiple temporal and spatial scales
- Confounding factors


- Factors examined include:
 - Nutrient (TN and TP) concentrations
 - Nutrient (TN and TP) loadings
 - Lag effects of nutrient loading
 - Effects of residence time
 - Effects of fluxes


Empirical Modeling




Empirical Modeling

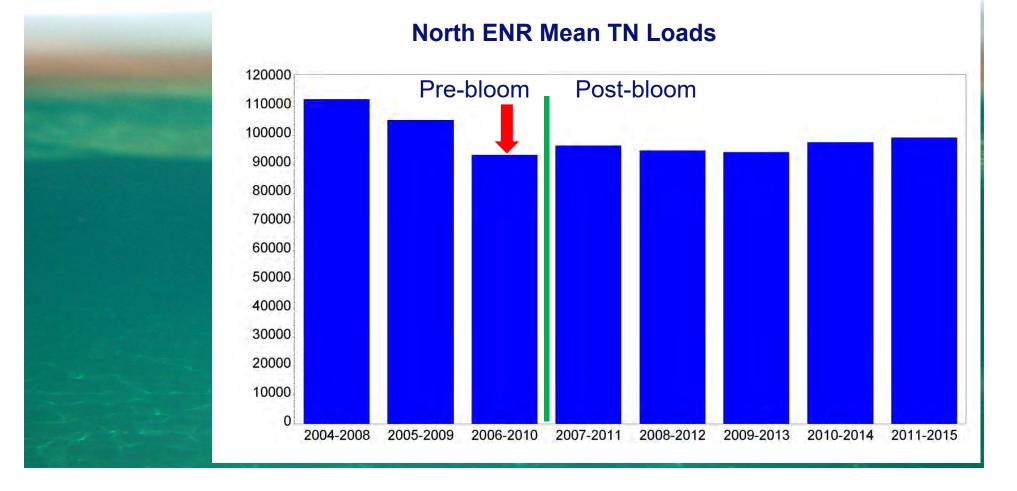
Empirical Modeling

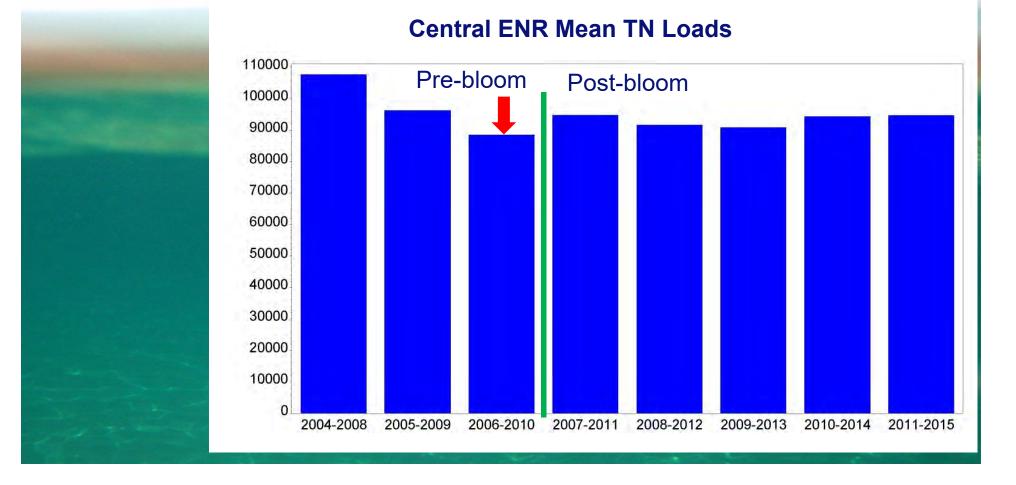
Empirical Modeling Conclusions

- No significant quantitative relationships between ambient water quality and nutrient loads were found
- It should not be inferred that chlorophyll is not dependent upon nutrient conditions
- Therefore, an alternative approach is needed to define nutrient loading targets

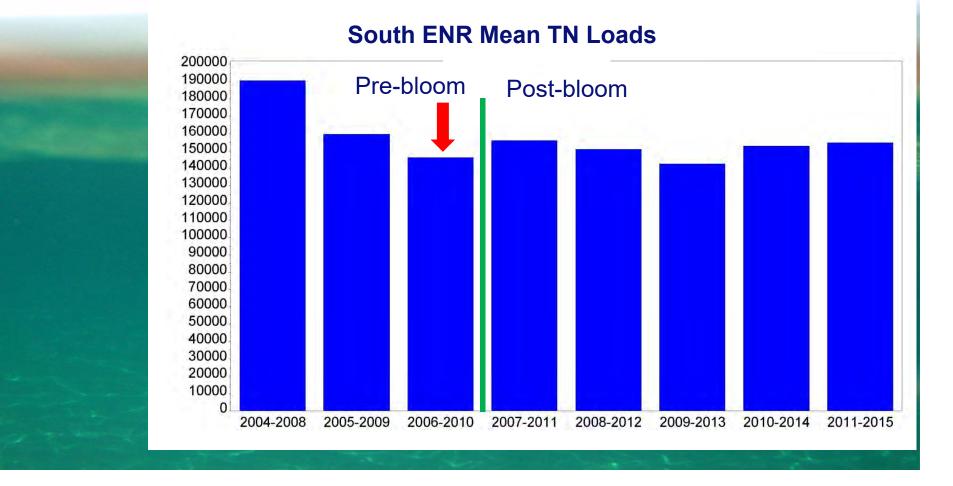
Other Approaches to Define Nutrient Loading Targets

- Current efforts to develop a mechanistic model building upon the existing EFDC hydrodynamic model are underway by the SJRWMD
- Given the complexity of Mosquito Lagoon this tool may be what is necessary to define the relationships between ambient water quality and nutrient loads


Other Approaches to Define Nutrient Loading Targets


- However, the timing of the availability of the model is uncertain
- Therefore, the Reference Period approach, i.e., the third commonly used alternative approach to establishing nutrient loading targets is recommended

- A reference period approach was used to establish the current NNCs for Mosquito Lagoon
- That reference period was defined as 2004-2008
- Examine the nutrient loading for that period and compare to other potential reference periods


- However, the timing of the availability of the model is uncertain
- Therefore, the Reference Period approach, i.e., the third commonly used alternative approach to establishing nutrient loading targets is recommended

- Four criteria:
 - Conservative, i.e., protective
 - Avoids the bloom period
 - Is not biased by excessively high or low rainfall
 - If possible, be reflective of management actions that have already been achieved

Reference Period Approach

Proposed Nutrient Loading Targets (lbs/year)

TN Loads				
ENR	Baseline	Target	% Reduction	
North	110,059	93,328	15	
Central	102,905	88,557	14	
South	173,125	146,245	16	

Proposed Nutrient Loading Targets (lbs/year)

TP Loads

ENR	Baseline	Target	% Reduction
North	12,370	10,538	15
Central	8,000	7,343	8
South	8,314	7,492	10

Treatable Loads

- Total nutrient loads are the sum of:
 - Runoff
 - Baseflow
 - OSDS
 - Point Sources
 - Atmospheric Deposition
- Need to translate the % load reduction in terms of the portion of the total nutrient loads that can be treated locally as part of the RAP

Proposed Nutrient Loading Targets (lbs/year)

Treatable TN Loads

ENR	Mean 2006-2010	% Reduction	Load Reduction
North	77,096	15	11,564
Central	7,520	14	7,520
South	77,441	16	12,391

Proposed Nutrient Loading Targets (lbs/year)

Treatable TP Loads

ENR	Mean 2006-2010	% Reduction	Load Reduction
North	10,195	15	1,529
Central	6,620	8	530
South	6,125	10	613

Mosquito Lagoon RAP Project Options and Steps Forward

Florida Stormwater Association Winter 2017 Meeting 6 December 2017

Retrofit Sizing

- Unit costs can be much lower based on knee of curve
- Beyond the knee may better than next best option
- Often siteconstrained

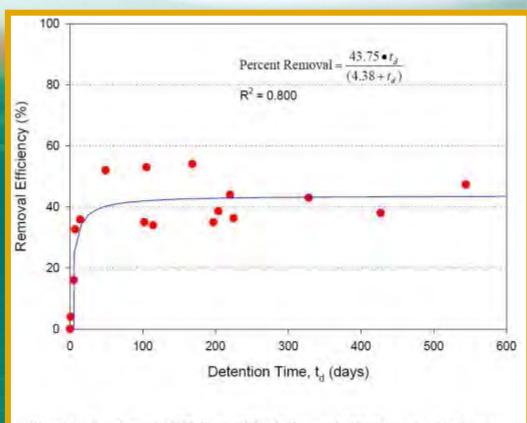
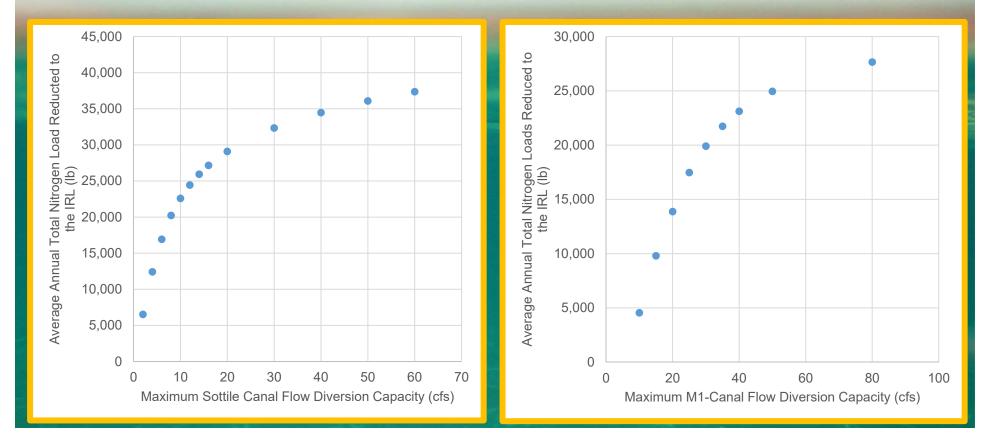
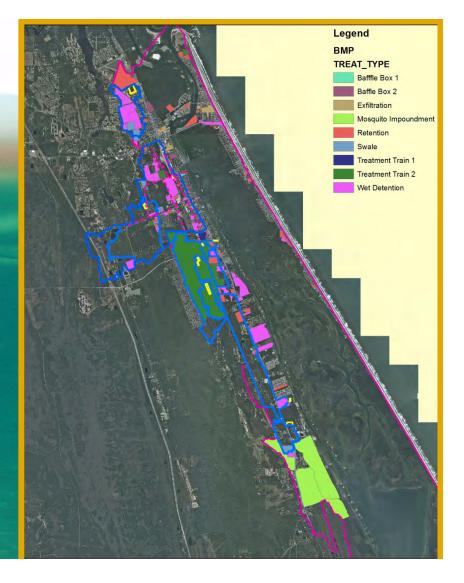
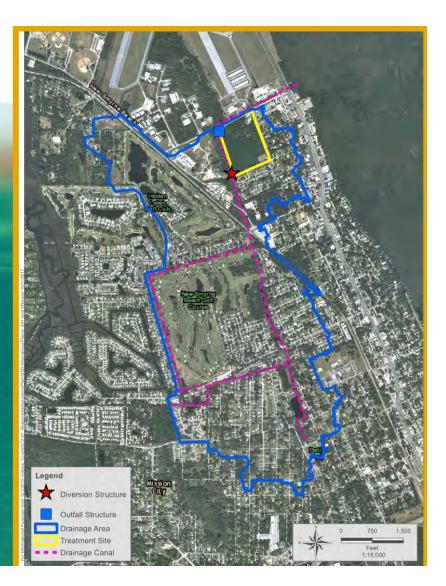



Figure 5-10. Removal Efficiency of Total Nitrogen in Wet Detention Ponds as a Function of Residence Time.


Retrofit Sizing

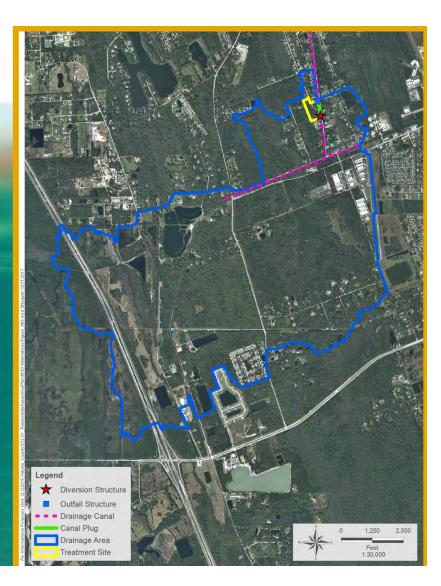
Life-Cycle Costing


- Capital costs ÷ Annual load reductions projected over economic life (\$/lb)
- Annual O&M costs ÷ Annual load reductions (\$/lb)
- Capital + O&M (\$/lb)

Project Options Overview Large Treatment Areas Economies of Scale Untreated Areas Spread Across **Stakeholders** Flexibility Lowest Life-Cycle Costs • 31,500 lb/yr TN

Option 1: Diversion to Borrow Pit South

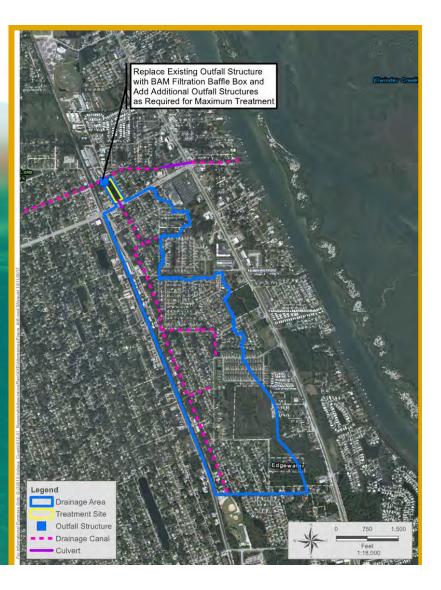
- Avoids Large Excavation
- FAA Concerns
- Base Flow and Runoff
- Treats 640 acres
- 1,300 lb/yr TN
- \$20/lb TN


Option 2: 10th Street Treatment Facility

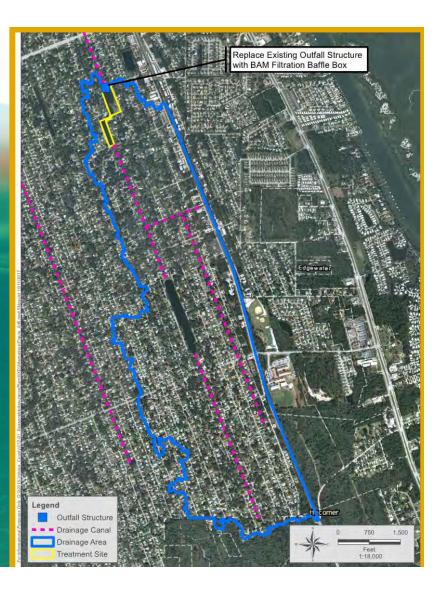
- Part of a Larger Project
- Base Flow and Runoff
- Treats 4,600 acres
- 5,600 lb/yr TN
- \$20/Ib TN

Option 3: Elizabeth Street Treatment Facility

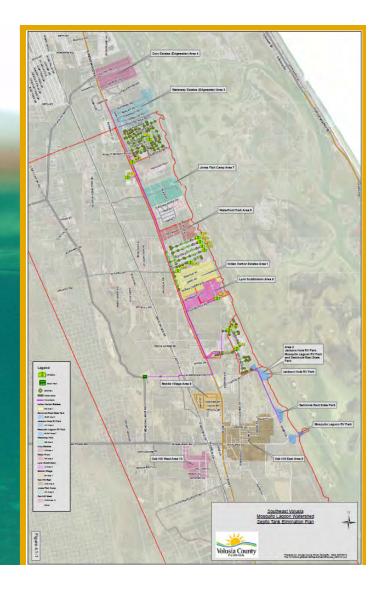
- Fall back to Option 2
- Expansion of Previous Design
- Treats 2,300 acres
- 4,300 lb/yr TN
- Base Flow and Runoff
- \$20/lb TN


Option 4: East Indian River Boulevard Bioreactor

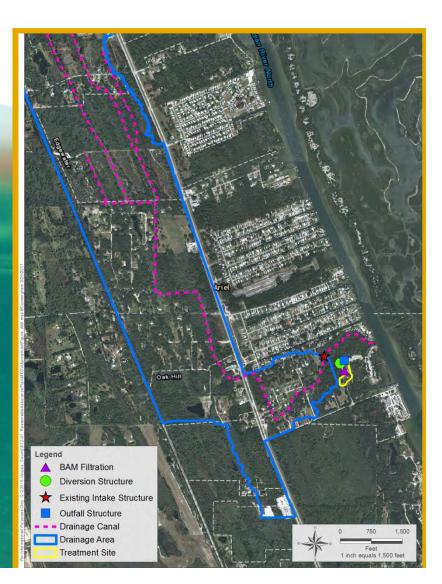
- Existing Swale and Wet
 Detention Treatment
- Treats 2,200 acres
- Mostly Base Flow
- Pumped System
- 3,900 lb/yr TN
- \$50/lb TN


Option 5: Fern Palm Drive BAM Outfall

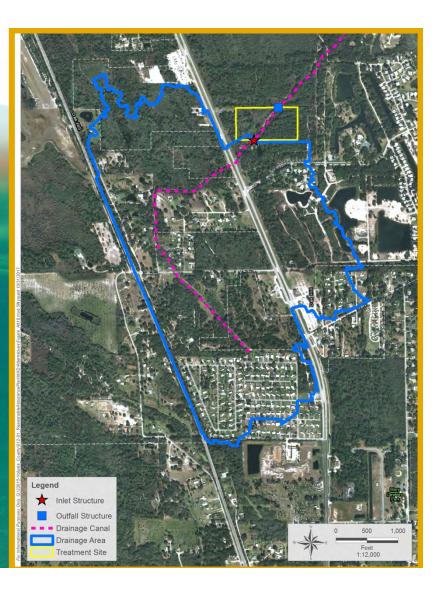
- Wet Detention Outfall Retrofit
- Part of Option 4 Fallback
- Treats 175 acres
- Base Flow and Runoff
- 630 lb/yr TN
- \$35/lb TN


Options 6 and 7

Similar to Option 5


Option 8: Septic to Sewer

- 15 to 25 lb/yr TN for Close Proximity to Waterbody
- \$900-\$1,500/lb/yr TN w/no WWTP Upgrades
- Large Stormwater Projects ~\$500 lb/yr TN
- 1000s of Ib/yr TN
- Tied to Funding


Option 9: Aerial Canal Water Quality Improvement

- Retrofit of a Retrofit
- BAM Outfall
- Treats 1,500 Acres
- 1,300 lb/yr TN
- \$90 lb/yr TN

Option 10: Lighthouse Cove Treatment Facility

- Base Flow and Runoff
- Treats 420 acres
- 760 lb/yr TN
- \$80/Ib TN

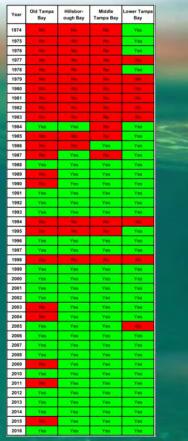
Option 11: Dragline Ditch Restoration

- Reviewed >>50 research papers
- Proposed: Difference between bare and vegetated denitrification rates
- Need site-specific research
- 1,300-acre restoration could be 13,000 lb/yr TN reduction

Option 12: Reduced Flux from North IRL

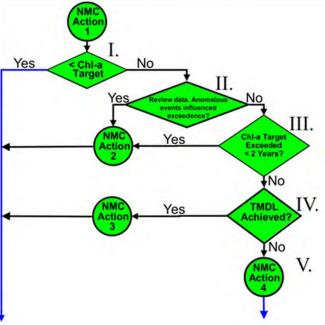
Option 13: Programmatic Changes

 3% Current Reduction: 2,100 lb/yr TN – 1% for DOT


6% Reduction w/FYN: 4,100 lb/yr TN

Management Actions

- Large stormwater projects and progammatic solutions will account for 54% of the needed load reductions
- Select septic to sewer will likely be needed long-term
- Dragline ditch restoration could be significant
- Smaller projects will contribute to the solution


Monitoring Compliance and
ReportingImage: Compliance and
Reporting

- Annual
 - Ambient water quality monitoring
- 5-Year Updates
 - Nutrient loading
 - Seagrass
 - Project Tracking
 - Progress in existing projects
 - Identification of new projects

Adaptive Management

 Develop a series of "what ifs" and responses

- NMC Action 1: Document annual bay segment specific chlorophyll-a levels relative to regulatory thresholds using the long-term EPCHC monitoring dataset.
- NMC Action 2: A full report of the anomalous event(s) or data which influenced the annual bay segment chlorophyll-a exceedence will be delivered to regulatory agencies after TBNMC review.
- NMC Action 3: Consider re-evaluation of the bay segment assimilative capacity based on nonattainment of bay segment chlorophyll-a threshold while meeting federally-recognized TMDL.
- NMC Action 4: If federally-recognized TMDL not achieved, compile nitrogen load data for regulatory review and identify potential further actions needed to achieve reasonable assurance for bay segment nitrogen load

DISCUSSION

